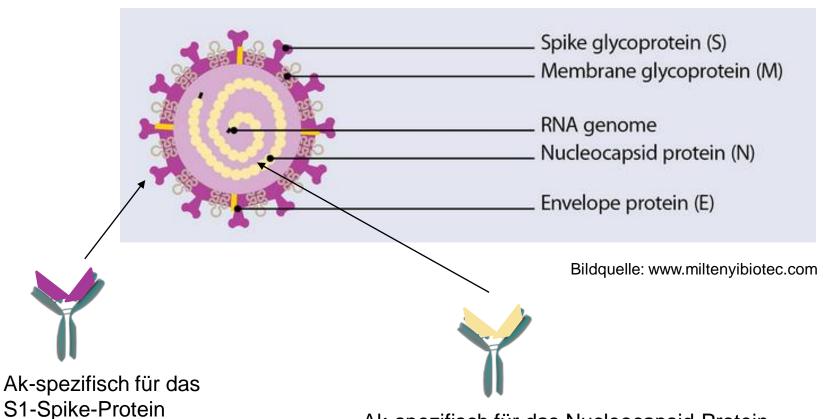

Post COVID und Post Vac-Syndrom

Labordiagnostische Strategien zum Nachweis und zur Therapielenkung

Dr. Volker von Baehr Institut für Medizinsiche Diagnostik Berlin



Es gibt <u>keine</u> beweisende Labordiagnostik für Post-Covid 19 oder Post-Vac

Es gibt <u>keine</u> Labormarker mit denen man sicher zwischen Post-Covid und Post-Vac (rechts)sicher unterscheiden kann

Die Theorie stimmt

Aufbau des SARS CoV 2:

IgG's nach Impfung und/oder

natürlicher Infektion möglich!

Ak-spezifisch für das Nucleocapsid-Protein

IgG's nur nach natürlicher Infektion möglich!

Ärztlicher Befundbericht

Untersuchung Ergebnis Einheit

Referenzbereich:

negativ

Infektionsdiagnostik

SARS-CoV-2 IgG-Ak (Nc) i.S.º positiv

IgG(Nc) wird nur nach natürlicher Infektion gebildet, nicht nach Impfung. Sie fallen schneller wieder ab im Vergleich zu IgG(S1). In bis zu 15% können IgG(Nc) falsch positiv sein.

SARS-CoV-2 IgG-Ak (Spike) i.S (CLIA)

Assay: Liason SARS-CoV-2 TrimericS (Diasorin) Bestimmung von IgG-Antikörpern gegen das trimere SARS-CoV2 Spike Protein zur Beurteilung der IgG-Immunantwort nach Impfung und natürlicher Infektion.

war sehr wahrscheinlich äuch infiziert? (wenn er nicht zu den 15% IgG(Nc)-falsch positiven gehört)

Ärztlicher Befundbericht

Untersuchung

Referenzbereich Ergebnis Einheit

Infektionsdiagnostik

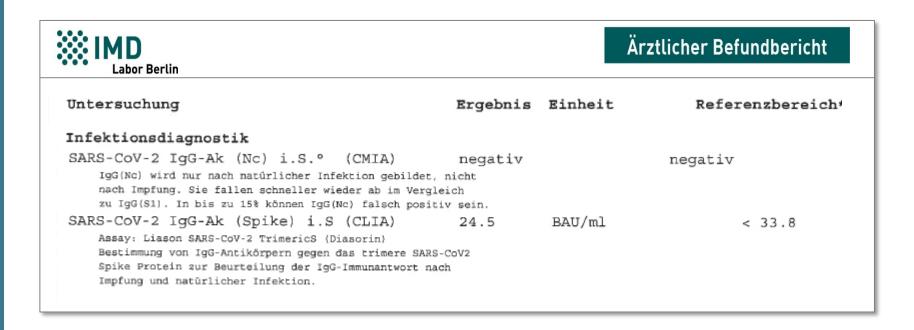
SARS-CoV-2 IgG-Ak (Nc) i.S. (CMIA) negativ negativ

IgG(Nc) wird nur nach natürlicher Infektion gebildet, nicht mach Impfung. Sie fallen schneller wieder ab im Vergleich zu IgG(S1). In bis zu 15% können IgG(Nc) falsch positiv sein.

SARS-CoV-2 IgG-Ak (Spike) i.S (CLIA)

Assay: Liason SARS-CoV-2 TrimericS (Diasorin)

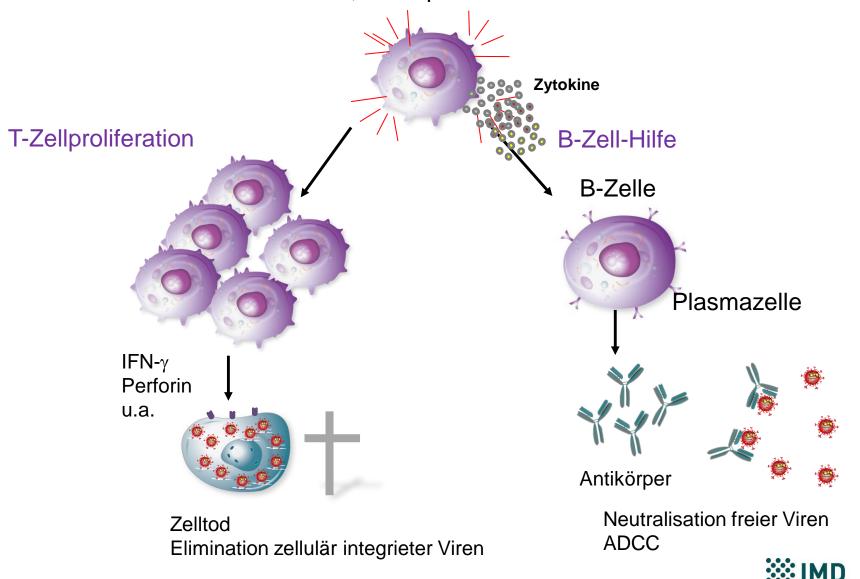
Bestimmung von IgG-Antikörpern gegen das trimere SARS-Cov2 Spike Protein zur Beurteilung der IgG-Immunantwort nach


Impfung und natürlicher Infektion.

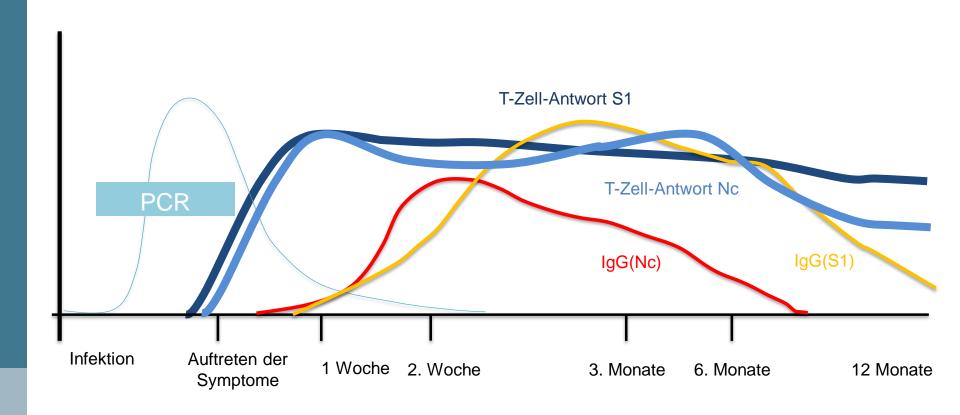
Immunität nur durch Impfung erfolgt? (wenn IgG(Nc) nicht inzwischen wieder negativ geworden ist)

IgG(Nc) verschwindet bei 50% schon nach 7-8 Monaten

Ca. 30% haben 1 Jahr nach Infektion und/oder Impfung gar keine IgG-Antikörper mehr im Blut



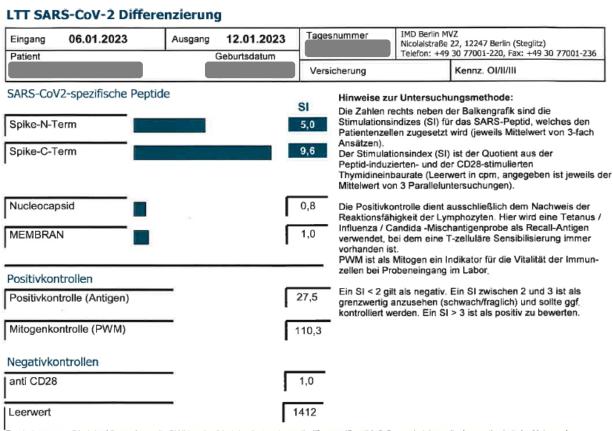
Bei 15% war IgG(Nc) falsch reaktiv durch Kreuzreaktivitäten zu endemischen Coronaviren, v.a. OC43 und HKU1



Wie bekämpft das Immunsystem virale Erreger?

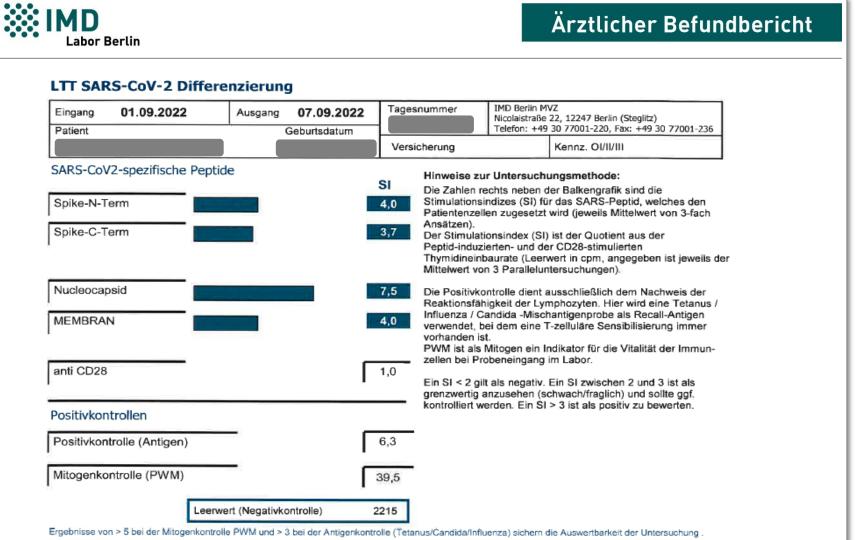
aktivierte, virusspezifische T-Zelle

Im Vergleich zur humoralen Immunantwort ist die T-Gedächtniszellreaktivität andauernder



Der Befund spricht dafür, dass der Patient nie mit dem Virus infiziert war!

Ärztlicher Befundbericht


Ergebnisse von > 5 bei der Mitogenkontrolle PWM und > 3 bei der Antigenkontrolle (Tetanus/Candida/Influenza) sichern die Auswertbarkeit der Untersuchung

Nach Stimulation der Patientenzellen mit SARS-CoV-2-Peptiden zeigt sich auf den N-terminalen und C-terminalen Bereich des Spike-Proteins eine T-zelluläre Gedächtniszell-Immunantwort.

Auf die Peptide des Nucleocapsid- und Membranproteins ist keine T-Zellantwort nachweisbar.

Da mit den beiden letzteren der Organismus nur über eine natürliche Infektion in Kontakt gekommen sein kann (da in mRNA-Impfstoffen nicht enthalten), spricht der Befund dafür, dass die bestehende Immunität eher durch eine

Hier ist eine Differenzierung "Post-Infektion" oder "Post-Impfung" nicht möglich!

Weiterhin Nachweis einer T-zellulären Gedächtniszell-Immunantwort nach Stimulation der Patientenzellen mit SARS-CoV-2-Peptiden des Spike-Proteins, des Nuclsocapsidoroteins und des Membranproteins. Im Vergleich zur

erlin

Gibt es eine genetische Prädisposition für asymptomatische Infektionsverläufe?

Article

A common allele of *HLA* is associated with asymptomatic SARS-CoV-2 infection

https://doi.org/10.1038/s41586-023-06331-x
Received: 10 October 2022
Accepted: 15 June 2023
Published online: 19 July 2023
Open access

Check for updates

Danillo G. Augusto^{1,2,3,18}, Lawton D. Murdolo^{4,18}, Demetra S. M. Chatzileontiadou^{4,5,18}, Joseph J. Sabatino Jr¹, Tasneem Yusufall¹, Noah D. Peyser⁶, Xochitl Butcher⁶, Kerry Kizer¹, Karoline Guthrie¹, Victoria W. Murray⁷, Vivian Pae⁷, Sannidhi Sarvadhavabhatla⁷, Flona Beltran⁷, Gurjot S. Gill⁷, Kara L. Lynch⁸, Cassandra Yun⁸, Colin T. Maguire⁹, Michael J. Peluso⁷, Rebecca Hoh⁷, Timothy J. Henrich¹⁰, Steven G. Deeks⁷, Michelle Davidson¹¹, Scott Lu¹², Sarah A. Goldberg¹², J. Daniel Kelly^{12,13}, Jeffrey N. Martin¹², Cynthia A. Vierra-Green¹⁴, Stephen R. Spellman¹⁴, David J. Langton¹⁵, Michael J. Dewar-Oldis⁴, Corey Smith¹⁶, Peter J. Barnard⁴, Sulggi Lee⁷, Gregory M. Marcus⁶, Jeffrey E. Olgin⁶, Mark J. Pletcher^{12,17}, Martin Maiers¹⁴, Stephanie Gras^{4,510} & Jill A. Hollenbach^{12,12,12}

Studies have demonstrated that at least 20% of individuals infected with SARS-CoV-2 remain asymptomatic ¹⁻⁴. Although most global efforts have focused on severe illness in COVID-19, examining asymptomatic infection provides a unique opportunity to consider early immunological features that promote rapid viral clearance. Here,

Table 1 | HLA-B*15:01 is associated with asymptomatic SARS-CoV-2 infection

	Asymptomatic	Symptomatic				
	cf	cf	OR	95% CI	P	P _{adj}
Discovery cohort						
HLA-B*15:01	0.199	0.094	2.40	1.54-3.64	5.67×10⁻⁵	0.002
HLA-B*15:01/15:01	0.022	0.005	8.58	1.74-34.43	0.001	
UK cohort						
HLA-B*15:01	0.171	0.070	3.56	1.15–10.97	0.02	
CHIRP/LIINC cohort						
HLA-B*15:01	0.250	0.086	3.44	0.50-23.64	0.13	

Results are shown for two-sided tests based on a generalized linear model, including adjustment for sex and age. cf, carrier frequency. The ORs are relative to non-HLA-B*15:01 carriers.

HLA-B *15:01 schützt vor symptomatischer SARS-CoV2-Infektion

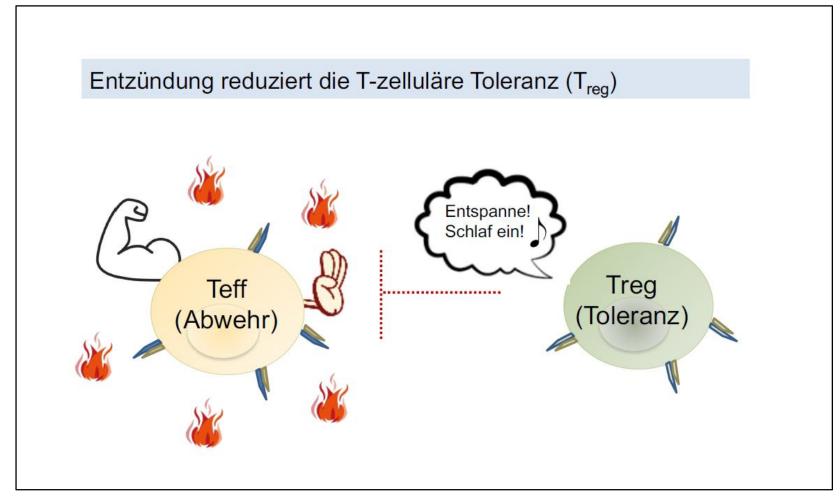
Ärztlicher Befundbericht

Untersuchung

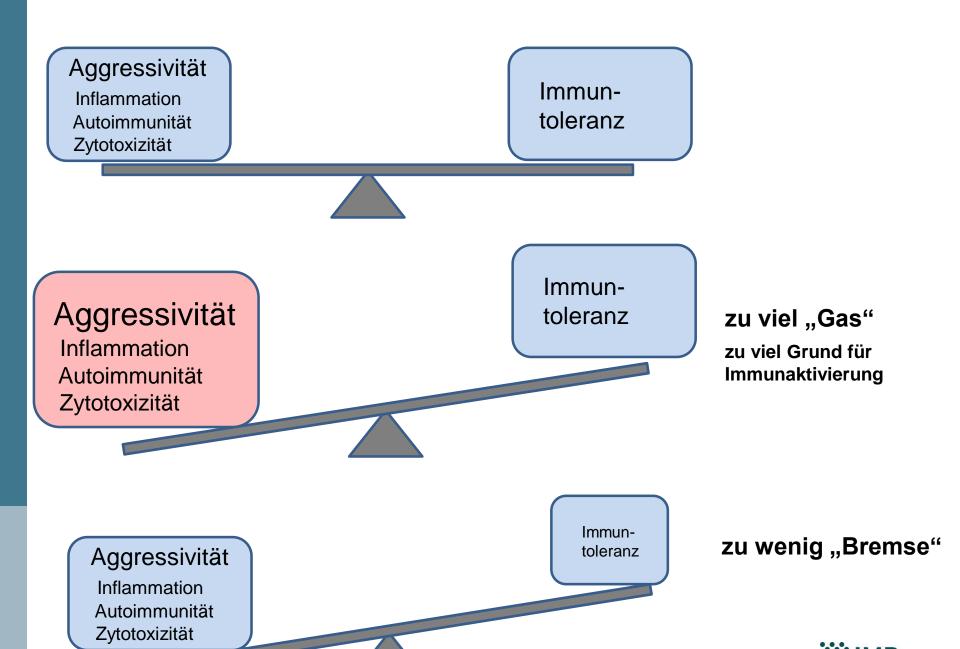
Ergebnis

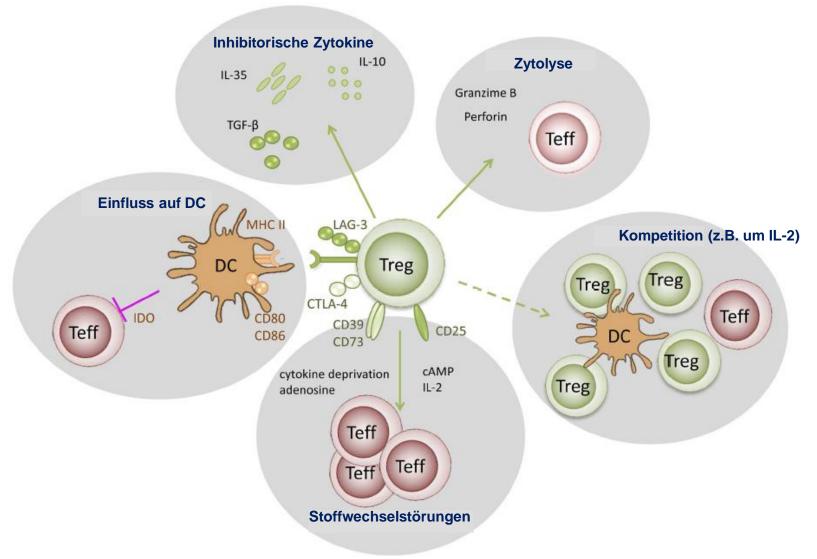
HLA-ABC Klasse I (PCR)

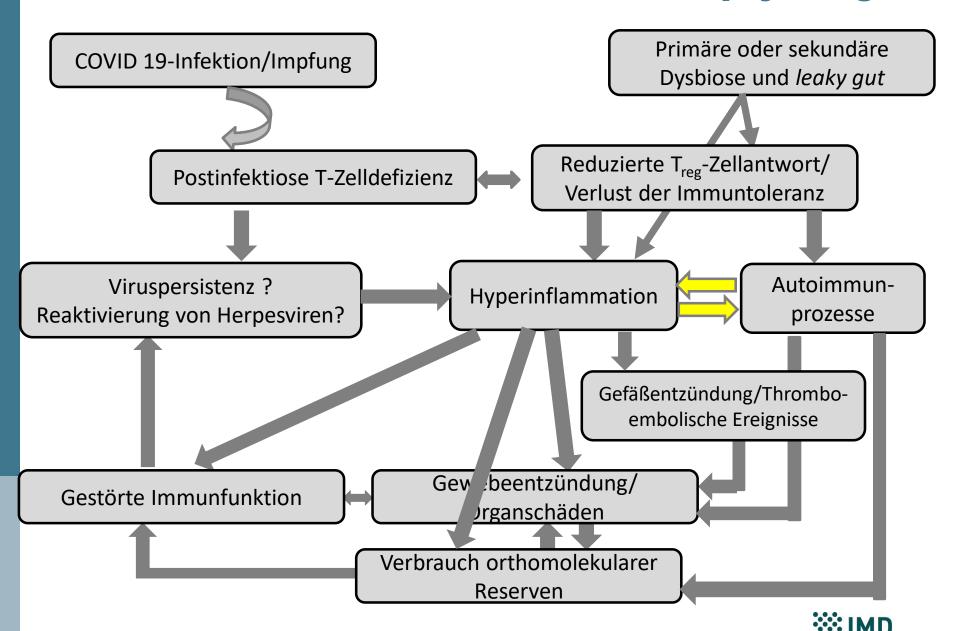
Nachweis von HLA-B*15:01


POSITIV

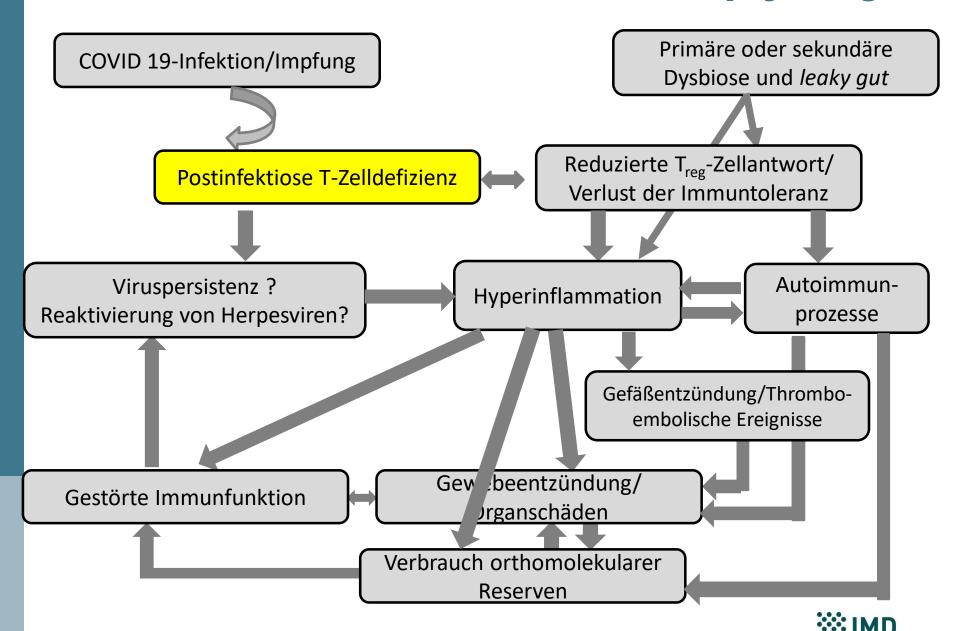
Homozygote Träger des HLA-Merkmals HLA-B*15:01 zeigen eine starke Assoziation zu asymptomatischen SARS-CoV-2-Infektionen, weil reaktive T-Zellen der Träger des HLA-Merkmals HLA B*15:01 einen natürlichen Gedächtnisphänotyp gegen SARS-CoV2-Antigene aufweisen. Sie reagieren sehr häufig kreuzreaktiv auf SARS-CoV2-Peptide, ohne zuvor mit dem Virus Kontakt gehabt zu haben (Augusto et al., Nature 2023).


Da der Patient zwei HLA-B*15:01-Allele trägt (homozygoter Träger), ist von einem Gendosiseffekt auszugehen. D.h. das Risiko einer asymptomatischen SARS-CoV-2-Infektion ist noch höher als bei Patienten, die nur ein assoziiertes HLA-Allel tragen.


Das Immunsystem ist "krank" bei Post Covid und Post Vak



CD4+ Tregs (CD4+/CD25++/CD127low) zeigen vielfache immunsuppressive Funktionsmechanismen



Inflammation steht im Zentrum der Pathophysiologie

Inflammation steht im Zentrum der Pathophysiologie

Gestörte Funktion der T-Lymphozyten

Ärztlicher Befundbericht

Untersuchung Ergebnis Einheit Referenzbereich

TH1/TH2 - Balance

Angegeben sind die Zytokinkonzentrationen nach 24 Stunden Stimulation mit ConA/SEB.

Die stimulierte Zytokinfreisetzung der T-Lymphozyten zeigt ein vermindertes IFNg (TH1-Anteil), was auf eine reduzierte zelluläre Immunkompetenz hindeutet. Die TH2-Antwort (IL4) ist

verstärkt. Es liegt eine TH1/TH2-Dysbala

Untersuchung / Material: Lymphozytentransformationtest Immunfunktion

Zelluläre Immunfunktion

	SI
Influenza	5,9
Tetatoxoid	3,6
Cytomegalievirus	14,3
Varizella zoster	7,5
Candida	4,5
Streptokokken	11,4

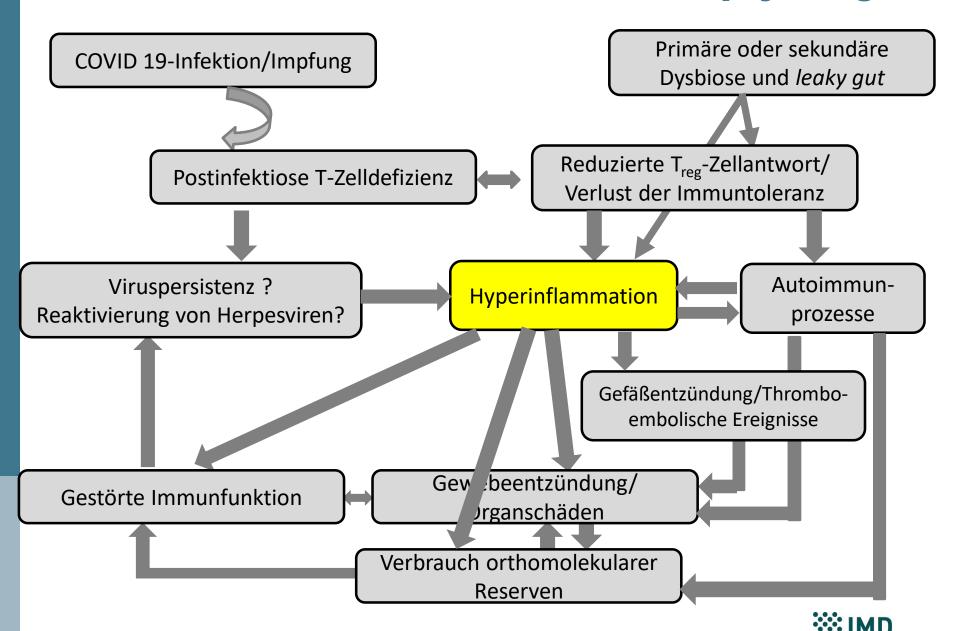
Erläuterung der Testmethodik:

Der LIT-Test prüft die antigenspezifische Reaktivität der T-Helfertymphozyten. Dabei wird die Aktivierbarkeit (induzierter Proliferation) der Lymphozyten gemessen. Antigene Stimulantier sind Bestandteile von verbreiteten Infektionserregern oder Impfstoffen.

Da letzteres nur bei intakter Immunfunktion zu einer deutlichen Zellproliferation führen, kann an Hand des mittleren Funktionsindex auf die aktuelle Immunkompetenz geschlossen werden. Der Mittlere Funktionsindex sollte unter einer wirksamen Immunstimulation ansteigen.

1154

75449 (Normalwert > 20000 c


Mittlerer Funktionsindex:

Aus dem Mittelwert der 6 antigenstimulierten Indizes errechnet sich der Mittliere Funktionsindex (siehe Feld darunter), der besser als die Einzelparameter zur Beurteilung und Verlaufskontrolle der Immunfunktion geeignet ist.

	gute Immunfunktion befriedigende Immunfunktion	Leerwert (Negativkontrolle)		
<10	reduzierte Immunfunktion deutlich reduzierte Immunfunktion	Mitogenkontrolle (PWM)		

Nachweis einer reduzierten zellulären Immunfunktion, erkennbar am Mittleren Funktionsindex von nur 7,9. Aus der Sicht dieses Befundes wäre bei gleichzeitig vorhandener klinischer Indikation eine immunstimulierende The indiziert. Unabhängig davon, wie die Immunstimulation erfolgt, kann der Therapieerfolg ca. 6-8 Wochen nach The beginn mit dem LTT kontrolliert werden. Im positiven Fall sollte der Mittlere Funktionsindex deutlich ansteigen. Der Zielwert sollte mindestens 15 sein.

Inflammation steht im Zentrum der Pathophysiologie

Systemische Inflammation

Ärztlicher Befundbericht

	Ergebnis	Einheit	
(CLIA)	2.11	mg/l	ΙЛΜ
(CLIA)	15.5	pg/ml	
(CLIA)	3.2	pg/ml	Fa
(CLIA)	45.4	pg/ml	
Inflammation			
(ELISA)	1211	pg/ml	Endo
-			
	form ist.		
_	24 5	na/ml	- 1
*		= -	Thro
-	_		
	91.4	ng/m1	Mast
aktivierung			
I	(CLIA) (CLIA) (CLIA) Inflammation (ELISA) ie am häufigsten vor assoziierte VEGF-Iso aktivierung	(CLIA) 2.11 (CLIA) 3.2 (CLIA) 45.4 Inflammation (ELISA) 1211 ie am häufigsten vorkommende assoziierte VEGF-Isoform ist. aktivierung A) 34.5 e Thrombozytenaktivierung Bl.(ELISA) 91.4	(CLIA) 15.5 pg/ml (CLIA) 3.2 pg/ml (CLIA) 45.4 pg/ml Inflammation (ELISA) 1211 pg/ml die am häufigsten vorkommende assoziierte VEGF-Isoform ist. aktivierung A) 34.5 ng/ml e Thrombozytenaktivierung Bl.(ELISA) 91.4 ng/ml

Makrophagen - aktivierung

Endothelzellaktivierung

Thrombozytenaktivierung

Mastzellaktivierung

In 15% der Fälle sieht man aber keine systemischen Entzündungszeichen

Immuntherapie?

Ja, aber in die richtige Richtung!

Hyperinflammatorischer Typ

Keine Immunstimulation, eher antientzündlich, antioxidativ

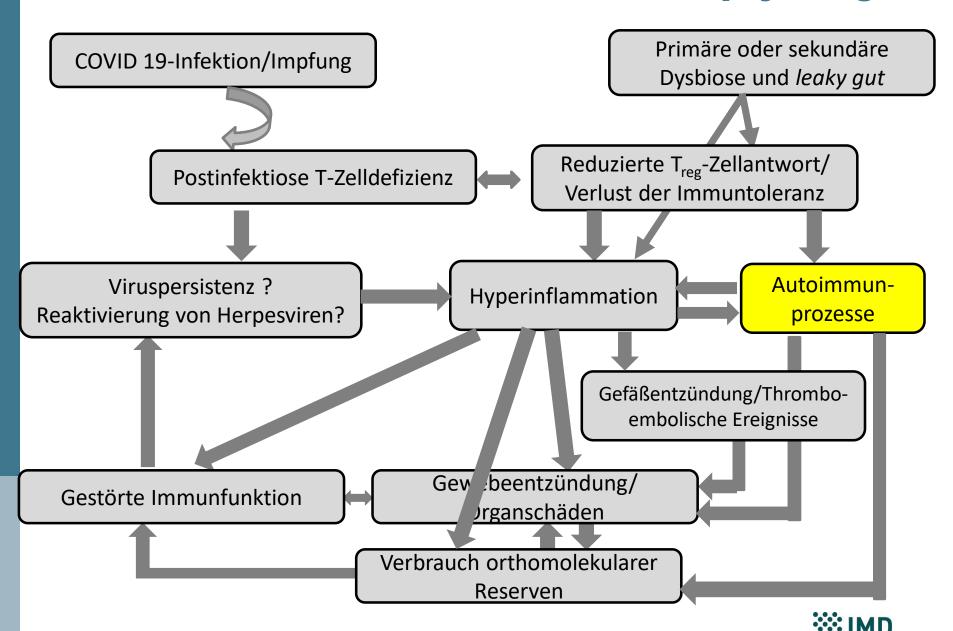
z.B. Boswellia, Curcuma, Silymarin, Hox-alpha ..., ggf. nach TNF-α-Hemmtest + Antioxidantien

HypOinflammatorischer Typ

Effektive Immunstimulation

z.B. Luivac, Bronchovaxom, Utilin, ggf. nach IFNg/IL10-Modulatortest

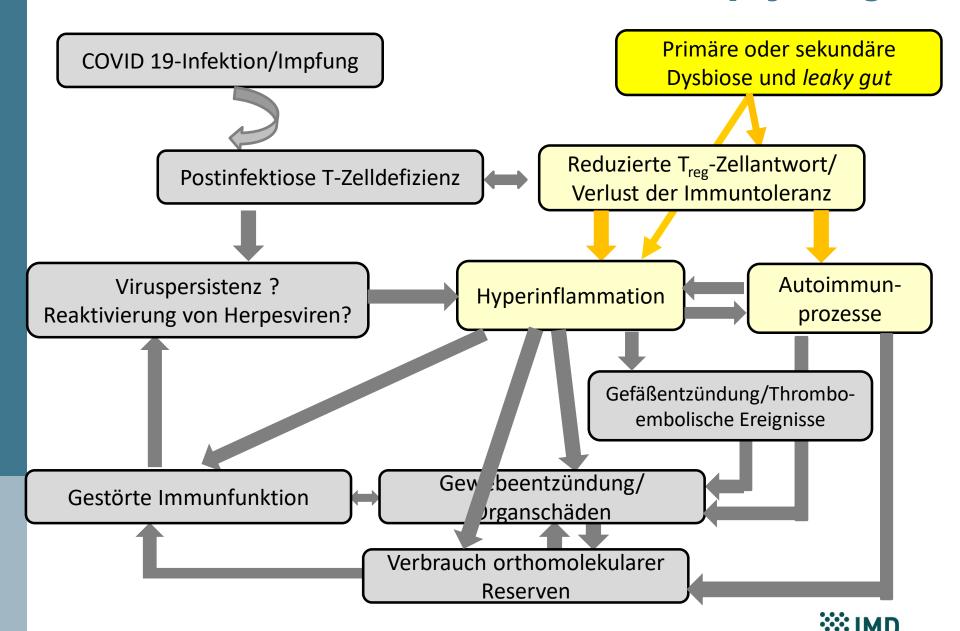
Immunstimulation = proentzündliche Therapie!



Beim hyperinflamamtorischen Post Covid/Post Vak wäre das:

"Öl ins Feuer gießen ..."

Inflammation steht im Zentrum der Pathophysiologie


Autoantikörper gegen G-Protein-gekoppelte Rezeptoren (AaK gg. Neuroendokrine Rezeptoren)

	IMD
• • •	Labor Berlin

Ärztlicher Befundbericht

Labor Beruii				
Untersuchung		Ergebnis	Einheit	Referenzbereich
Autoimmundiagnostik				
G-Protein-gekoppelte Rezeptor	-Ak i.S			
ß1-adrenerge RezAAk i.S.	(ELISA)	34.4	U/ml	< 15.0
ß2-adrenerge RezAAk i.S.	(ELISA)	52.9	U/ml	< 8.0
M3-muskarinerge AChR-AAk i.S.	(ELISA)	34.8	U/ml	< 6.0
M4-muskarinerge AChR-AAk i.S.	(ELISA)	14.6	U/ml	< 10.7
Endothelin-Rez-A-Ak i.S.	(ELISA)	23.3	U/ml	< 10
Angiotensin-II-Rez-I-Ak i.S.	(ELISA)	28.1	U/ml	< 10
PAR1-Ak i.S.	(ELISA)	21.3	U/ml	< 13
CXCR3-Ak i.S.	(ELISA)	26.9	U/ml	< 30
Interpretation				
Erhöhte Konzentrationen vo	on Antikörper	n (Ak) geg	en G-Protein	
gekoppelte Rezeptoren (GPC	CR) können au	f das Vorl	iegen eines	
Post-COVID-Syndroms oder e	eines ME/CFS			
(Myalgische Enzephalomyeli	itis/Chronic	Fatigue Syn	ndrome)	
hinweisen, sind aber nicht	beweisend f	ür die Dia	gnose.	
Erhöhte funktionelle GPCR-	-Ak können au	ch im Rahm	en anderer	
physiologischer aber auch	pathophysiol	ogischer P	rozesse vor-	
kommen. Daher sollte die E	Beurteilung in	mmer im kl	inischen	
Kontext erfolgen. Es empfi	ehlt sich ein	ne Verlauf	skontrolle	
der Ak nach ca. 3-6 Monate	en.		9	

Inflammation steht im Zentrum der Pathophysiologie

Calprotectin im Stuhl (ELISA)

sekretorisches IgA (ELISA)

Alpha-1-Antitrypsin (ELISA)

Zonulin im Stuhl (ELISA)

Histamin (ELISA)

Ärztlicher Befundbericht

Molekulargenetisches Mikrobiotaprofil (PCR + Hybridisierung)

Dysbiose-Index	3		1	1 2 3 4 5
bakterielle Diversität	1,9		> 2,5	•
Butyratbildung	normal		normal	
Mukosaprotektion	normal		normal	
Kolonisationsresistenz	normal		normal	
Proinflammatorische Bakterien	erhöht		normal	•
Butyratbildung				
Anaerobutyricum hallii	normal		normal	
Eubacterium rectale	vermindert		normal	
Faecalibacterium prausnitzii	normal		normal	
Mukosaprotektion_				
Akkermansia muciniphila	erhöht		normal	
Faecalibacterium prausnitzii	normal		normal	
Lactobacillus spp.	normal		normal	
Kolonisationsresistenz				
Bacteroides spp.	normal		normal	
Bacteroides spp. & Prevotella spp.	normal		normal	
Bifidobacterium spp.	normal		normal	
Lactobacillus spp.	normal		normal	•
Proinflammatorische Bakterien				
Proteobacteria gesamt	erhöht		normal	
Enterobacteriaceae	normal		normal	
E. coli & Shigella spp.	erhöht		normal	
weitere Darmpathologie-assoziierte Bakterien				
Actinobacteria				
Actinobacteria gesamt	normal		normal	
Actinomycetales	vermindert		normal	
Bacteroidetes				
Alistipes spp.	normal		normal	•
Bacteroides fragilis	leicht erhöht		normal	
Parabacteroides spp.	vermindert		normal	
pH-Messung	7,5		5,5 - 6,5	erhöht
Kurzkettige Fettsäuren (GC-MS)				
Acetat	39,3	μmol/g	> 95,0	vermindert
Butyrat	0,71	μmol/g	> 20,0	vermindert
Propionat	10,9	μmol/g	> 22,0	vermindert
B-Defensin (ELISA)	89	ng/g	8 - 60	erhöht

41

1025

4030

199

334

μg/g

ng/g

μg/g

μg/g

ng/g

< 50

< 600

< 268

< 101

510 - 2040

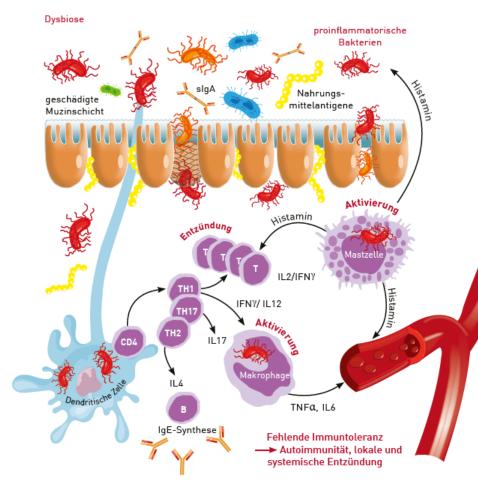
normal

erhöht

erhöht

normal

erhöht



In der gesunden Darmschleimhaut lernen unsere T-Lymphozyten tolerant zu sein!

Intakte Darmbarriere

Symbiose Muzinbildne Muzinschicht Nahrungsmittelantigene Antikörper IgG/IgG4 Apoptose von TH1-Effektorzellen Dendritische TGFβ 个, IL10个 Blockade proinflammatorischer TH1-Effektorzellen

Darm-Barrierestörung

Bakterien der natürlichen Mikrobiota induzieren Immuntoleranz durch Reduktion der Antigenkonfrontation, durch Erhaltung der Darmbarriere und durch physiologische Antigenstimulation ("Training") der im Darm ansässigen regulatorischen T-Zellen.

Bei defekter Darmbarriere und bakterieller Dysbiose erfolgt eine Überstimulation des Immunsystems mit folgender Dominanz antigenspezifischer TH1-, TH2- oder TH17-Zellen. In der Konsequenz können auch zelluläre Immunreaktionen gegenüber Nahrungsmitteln auftreten, weil neutralisierende IqG4-Antikörper fehlen.

Systemische Inflammation kommt (meist) aus dem Darm

Labor Berlin				Ärztlicher Befundbericht
Untersuchung		Ergebnis	Einheit	Referenzbereich
Klinische Immunologie				
CRP hoch sensitiv i.S.	(CLIA)	2.11	mg/l	< 3.0
TNF-alpha i.S.	(CLIA)	15.5	pg/ml	< 8.1
Interleukin 1-ß i.S.	(CLIA)	3.2	pg/ml	< 5.0
Interleukin 6 i.S.	(CLIA)	45.4	pg/ml	< 3.8
Hinweis auf systemische	Inflammation	1		
VEGF i.s.	(ELISA)	1211	pg/ml	< 380
Der ELISA misst VEGF-A, welches on und am stärksten mit Angiogenese Nachweis einer Endothel	assoziierte VEGF-I			
Lösliches CD40L i.S. (ELIS	A)	34.5	ng/ml	< 11
Inflammatorisch bedingt	e Thrombozyte	naktivierung	ī	
Histamin (gesamt) i. Hep	Bl.(ELISA)	91.4	ng/ml	< 65.5
Nachweis einer Mastzell	aktivierung			
Nachweis einer Mastzeil	aktivierung			

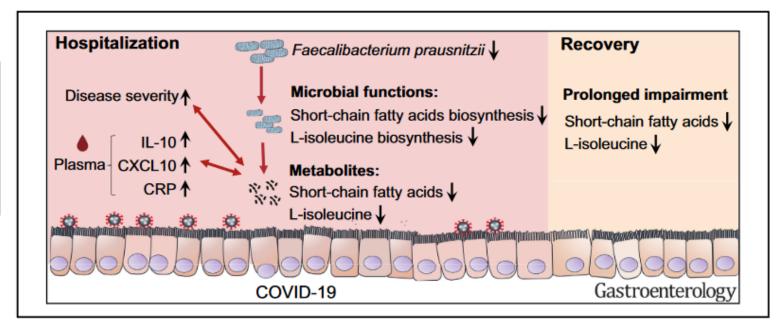
Proinflammat. Dysbiose + *leaky gut* = systemische Entzündung

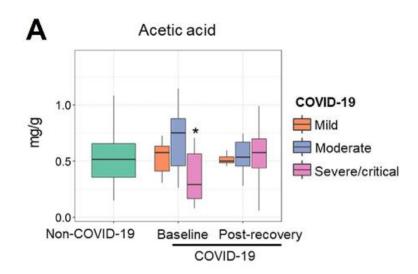
Einsendungen von Stuhlproben ins Labor bitte nicht per Post sondern nur per LaborKurier!

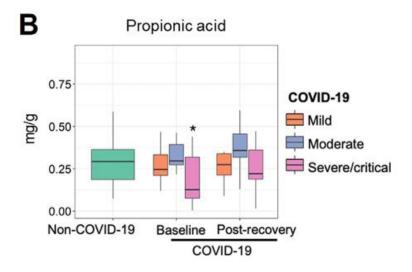
Sicher am Folgetag und temperaturstabil

Die Vermutung, dass Päckchen beim Transport warm werden, bestand schon lange. Apotheker Christian Gerninghaus hat nun Gewissheit. (s / Foto: imago images / Alexander Pohl)

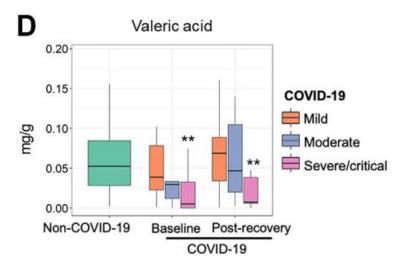
Wie warm wird es eigentlich in so einem Päckchen tatsächlich? Darüber wird ja viel spekuliert. Christian Gerninghaus, Apotheker aus Schlitz, wollte es genauer wissen und verschickte vergangene Woche, als es richtig heiß war, ein Päckchen mit zwei Minimum-Maximum-Thermometern quer durch Hessen.

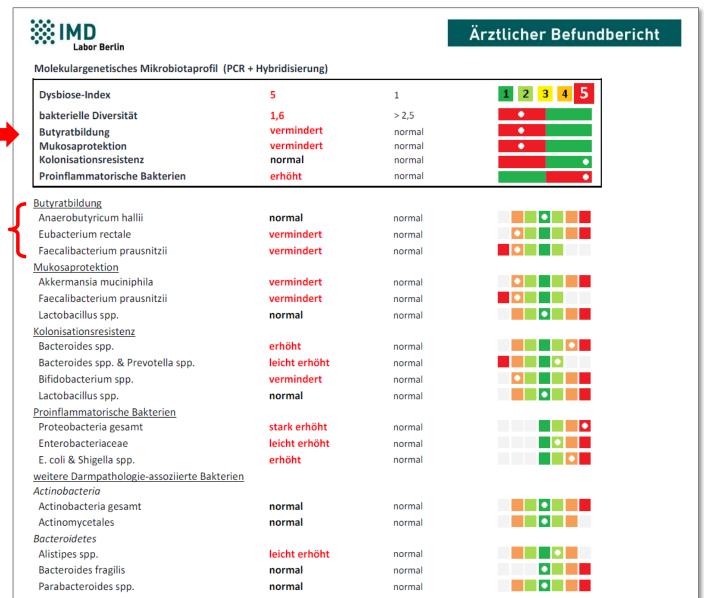


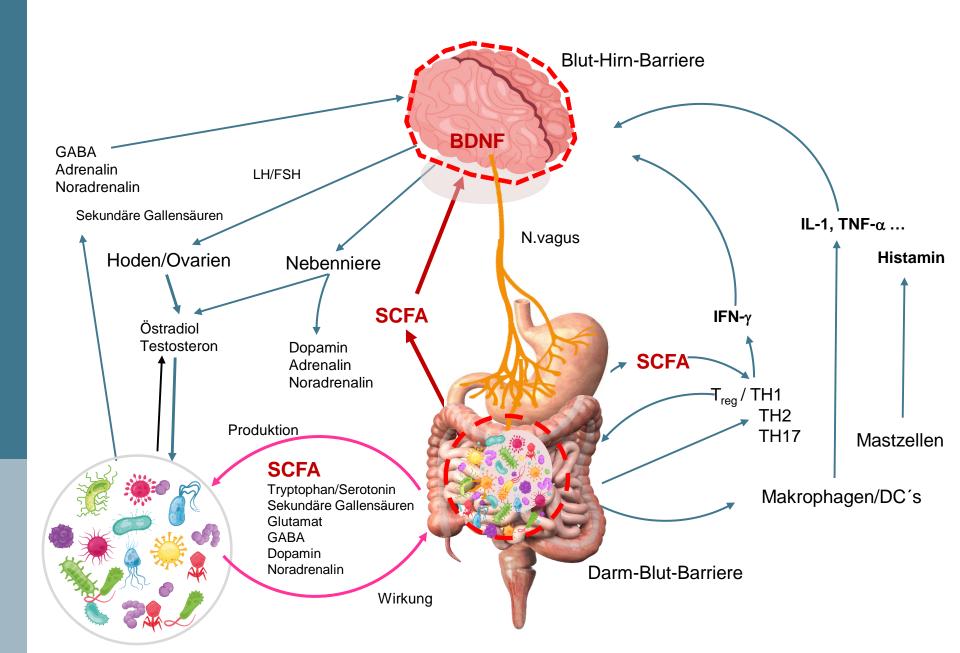

Prolonged Impairment of Short-Chain Fatty Acid and L-Isoleucine Biosynthesis in Gut Microbiome in Patients With COVID-19



Fen Zhang, ^{1,2,3,4,*} **Yating Wan**, ^{1,2,3,4,*} Tao Zuo, ^{1,2,3,4} Yun Kit Yeoh, ^{1,5} Qin Liu, ^{1,2,3,4} Lin Zhang, ^{1,2,3,4,6} Hui Zhan, ^{1,2,3,4} Wenqi Lu, ^{1,2,3,4} Wenye Xu, ^{1,2,3,4} Grace C. Y. Lui, ^{4,7} Amy Y. L. Li, ⁴ Chun Pan Cheung, ^{1,2,3,4} Chun Kwok Wong, ⁷ Paul K. S. Chan, ^{1,2,5,8} Francis K. L. Chan, ^{1,3,4,9} and Siew C. Ng^{1,2,3,4,9}


¹Center for Gut Microbiota Research, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong, China; ²Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong, China; ³State Key Laboratory for Digestive Disease, Institute of Digestive Disease, The Chinese University of Hong Kong, Shatin, Hong Kong, China; ⁴Department of Medicine and Therapeutics, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong, China; ⁵Department of Microbiology, The Chinese University of Hong Kong, Shatin, Hong Kong, China; ⁶Department of Anaesthesia and Intensive Care and Peter Hung Pain Research Institute, The Chinese University of Hong Kong, Shatin, Hong Kong, China; ⁸Stanley Ho Centre for Emerging Infectious Diseases, The Chinese University of Hong Kong, Shatin, Hong Kong, China; and ⁹Microbiota I-Center (MagIC), Shatin, Hong Kong, China





Eine Ursache: zu wenig SCFA-bildende Bakterien

Kurzkettige Fettsäuren (SCFA)

Ärztlicher Befundbericht

Untersuchung Ergebnis Einheit Referenzbereich

Klinische Immunologie

BDNF i. Serum (PIA) 12.3 ng/ml 18.3 = 31.4

Niedriges BDNF weist auf gesteigerte Stressbelastung hin und wurde gehäuft bei Depression, Burnout und stadienabhängig bei neurodegenerativen Erkrankungen beobachtet.

Zu den weiteren Ursachen einer geringen BDNF-Konzentration zählen Schlaf- und Bewegungsmangel, Zufuhr von Zucker und gesättigten Fetten, sowie eine geringe Produktion von Butyrat im Darmmikrobiom. Zur Ursachendifferenzierung empfehlen wir eine Mikrobiomanalyse sowie die Quantifizierung der kurzkettigen Fettsäuren in Stuhl und Serum (ggf. Anforderungsschein Mikrobiomanalyse unter (030) 77001-220 anfordern).

Mikronährstoffe

Kurzkettige Fettsäuren (Serum) °°

Die Analyse erfolgte mittels GC-MS/MS.

Acetat	74.6	µmol/l	>	112
Propionat	5.65	µmol/l	>	7.40
Butyrat	1.1	µmol/l	>	3.50

Geringe systemische Verfügbarkeit kurzkettiger Fettsäuren (SCFA). Ein Mangel an diesen bakteriellen Metaboliten fördert systemische Entzündung und inflammatorische Prozesse des Nervensystems (Neuroinflammation). Zu den möglichen Ursachen des vorliegenden systemischen Mangels zählt eine Darmdysbiose (messbar im molekulargenetischen Mikrobiotaprofil) und eine verminderte Zufuhr von Ballaststoffen und komplexen Kohlenhydraten.

Inflammation steht im Zentrum der Pathophysiologie

Vollblutmineralstoffstatus normalisieren und toxische Metall-Belastungen reduzieren

Mineralstoffanalyse im Vollblut - erweitertes Profil "11 + 6" (ICP-MS)

Die Analyse erfolgte im lysierten Heparin-Vollblut zur Bestimmung der intra- und extrazellulär lokalisierten Spurenelemente.

intra- und extra	zellulär lok	alisierte	n Spurenelemente.	-	Abwei	chung
Analyt	Erg	ebnis	Referenzbereich		vom Me	edian *
Magnesium	38,5	mg/l	30 - 40		13	%
Selen	142	μg/l	90 - 230		33	%
Zink	4,9	mg/l	4,5 - 7,5		-9	%
Calcium	62	mg/l	55 - 70		2	%
Kalium	1586	mg/l	1386 - 1950		0	%
Natrium	1632	mg/l	1500 - 1850		0	%
Phosphor	463	mg/l	403 - 577		7	%
Chrom	0,25	μg/l	0,14 - 0,52		4	%
Kupfer	0,31	mg/l	0,70 - 1,39		-62	%
Mangan	6,5	μg/l	8,3 - 15,0		-42	%
Molybdän	0,5	μg/l	0,3 - 1,3		0	%
Wechselwi	rkungen	mit to	xischen Metallen:			
Aluminium	<10,0	μg/l	< 11,4			
Arsen	0,8	μg/l	< 1,2			
Blei	21,0	μg/l	< 28			
Cadmium	12,1	μg/l	< 0,6	•		
Nickel	2,1	μg/l	< 3,8	0		
Quecksilber	4,6	μg/l	< 1,0			

^{*} Die Abweichung vom Median gibt an, wie stark der Messwert vom häufigsten Wert der Referenzpopulation abweicht. Der in der Referenzpopulation häufigste Wert (Median) stellt keinen therapeutischen Zielwert dar.

Mögliche Ursachen und potentielle Wirkungen der hier auffälligen Spiegel:

Kupfer niedrig:

- Verminderte Resorption durch übermäßige Zufuhr von Calcium, Eisen, Zink, Phytat; Vitamin-B6-Mangel; Alkohol; bestimmte Medikamente*; entzündliche Darmerkrankungen und Durchfall
- Vermehrte renale Ausscheidung durch übermäßige Zufuhr an Molybdän; bei Nierenfunktionsstörungen;
 Verlust durch Schwitzen

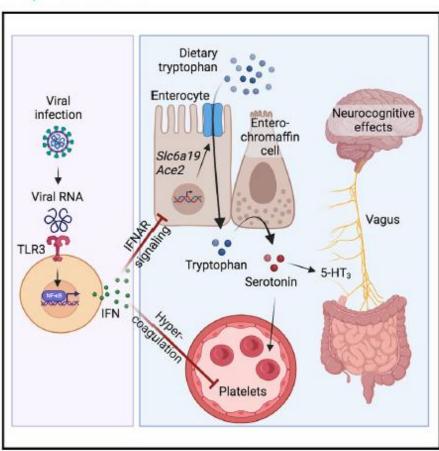
B-Vitamine normalisieren (im Bio-Aktivitätstest messen!)

Labor Berlin		Ärztlicher Befundbericht		
Untersuchung	Ergebnis	Einheit	Referenzbereich	
Mikronährstoffe				
Bioaktive Vitaminanalytik				
Der Test erfasst den Gehalt an bioaktivem Vitamin im Patientenblut durch Messung des Wachstums selektiv Vitamin-abhängiger Indikatormikroorganismen.		1 48		
Vitamin Bl bioaktiv i.EDTA Blut	22.4	μg/l	> 39.8	
Vitamin B2 bioaktiv i.S.	122	µg/l	> 85.4	
Vitamin B6 bioaktiv i.S.	6.43	μg/1	> 10.1	
Vitamin B12 bioaktiv i.S.	1121	ng/l	> 358	
Folsäure bioaktiv i. EDTA-Blut	>160	μg/l	> 100	
Biotin (Vitamin H) bioaktiv i.S.	1123	ng/l	> 1250	
Vitamin B3 (Nicotinamid) bioaktiv	54.1	μg/1	> 17.0	
Pantothensäure (B5) bioaktiv i.S.	141	µg/l	> 36.0	

Fettsäurestatus

(in Erythrozyten-Membranen messen und nicht im Serum)

Ärztlicher Befundbericht


Fettsäureprofil der Erythrozytenmembran	(GC-MS)	
Die Bestimmung der prozentualen Anteile am Gesamt-Fettsäu	regehalt der	· M

alpha-Linolen (ALA)	0,18	%		> 0,10
Eicosapentaen (EPA)	0,84	%	•	> 1,99
Docosapentaen-n3 (DPA)	2,84	%		> 2,30
Docosahexaen (DHA)	4,53	%		> 5,99
Summe	8,39	%	•	10,40 - 19,00
Omega-6-Fettsäuren	0,09	70		10,40 - 13,00
gamma-Linolen (GLA)	0,11	%		> 0,07
Dihomo-gamma-Linolen (DGLA)	1,46	%		> 1,33
Linol (LA)	11,63	%		6,73 - 10,76
Arachidon (AA)	17,46	%		9,80 - 17,20
Eicosadien	0,43	%		0,11 - 2,67
Docosatetraen (DTA)	2,66	/0		1,28 - 5,30
Docosapentaen-n6	0,51	%	•	0,21 - 1,88
Summe	34,27	%	•	22,08 - 33,29
Einfach ungesättigte Fettsäure		,,,		
Olein (Ω-9)	14,87	%		> 12,39
Palmitolein (Ω-7)	0,38	%		> 0,22
Gondo (Ω-9)	0,20	%		> 0,07
Nervon (Ω-9)	0,13	%	0	> 0,02
Summe	15,57	%		12,23 - 16,48
Trans-Fettsäuren	10,01	70		12,20 10,10
Trans-Palmitolein	0,09	%		> 0,07
Trans-Öl	0,49	%		< 1,75
Trans-Linol	0,19	%		< 0,41
Gesättigte Fettsäuren	0,13	70		٠,٠,٠
Myristin	0,42	%		< 0,44
Palmitin	22,22	%		< 24,51
Stearin	17,98	%		< 22,56
Arachin	0,13	%		< 0,23
Behen	0,08	%		< 0,26
Lignocerin	0,16	%		< 0,51
Summe	40.99	 %		37,03 - 47,78
Quotienten	. 3,00	, 0		0.,50 11,10
Omega-3-Index	5,4	%		8,0 - 16,0
Omega-6/Omega-3	4,1	70		< 5,1
Verhältnis AA/EPA	20,8		•	< 20,0
Verhältnis LA/DGLA	8.0		•	< 6,9

Serotonin reduction in post-acute sequelae of viral infection

Graphical abstract

Authors

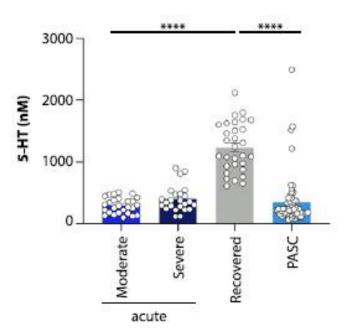
Andrea C. Wong, Ashwarya S. Devason, Iboro C. Umana, ..., Sara Cherry, Christoph A. Thaiss, Maayan Levy

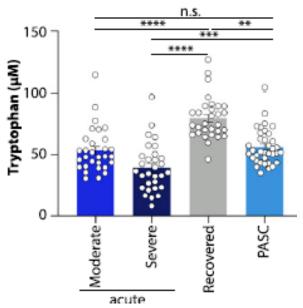
Correspondence

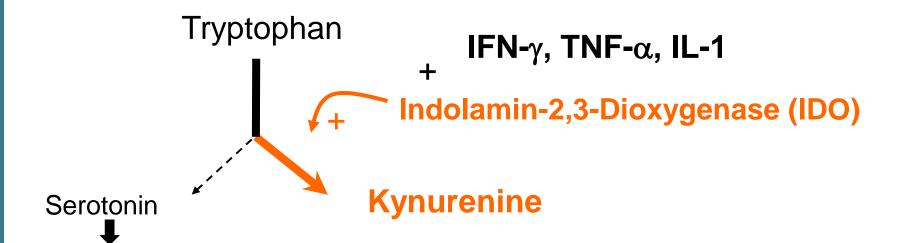
benjamin.abramoff@pennmedicine. upenn.edu (B.A.A.), cherrys@pennmedicine.upenn.edu (S.C.), thaiss@pennmedicine.upenn.edu (C.A.T.), maayanle@pennmedicine.upenn. edu (M.L)

In brief

Post-viral syndromes are associated with serotonin reduction, which may contribute to the neurological and cognitive symptoms seen in individuals with Long COVID.


Highlights


Long COVID is associated with reduced circulating serotonin levels


Highlights

- Long COVID is associated with reduced circulating serotonin levels
- Serotonin depletion is driven by viral RNA-induced type I interferons (IFNs)
- IFNs reduce serotonin through diminished tryptophan uptake and hypercoagulability
- Peripheral serotonin deficiency impairs cognition via reduced vagal signaling

- Stimmung
- Schlaf

Melatonin

- Appetit
- Sexualverhalten

- Neurotoxische Wirkung
- Glutamat-Rezeptor-Wirkung
- Hemmen den Tryptophantransport ins ZNS

Bei erhöhter IDO-Aktivität keine Tryptophan-Substitution

IMD Labor Berlin-Potsdam

Ärztlicher Befundbericht

Referenzbereich

< 1.6

Klinische Immunologie

IDO-Aktivität

Untersuchung

Der Test misst die Aktivität der Indolamin-2,3-Dioxygenase in der Zellkultur anhand des Umsatzes von zugesetztem Tryptophan nach Mitogen-induzierter Zellaktivierung.

Tryptophan (basal) 3.98 µg/ml Tryptophan (nach Aktivierung) 1.12 µg/ml Ratio vor/nach Aktivierung 3.6

Bei erhöhter IDO-Aktivität wird Tryptophan beschleunigt abgebaut. Dies kann die Serotonin-Synthese im ZNS beeinträchtigen. Die Metabolite des Tryptophan-Abbaus (Kynurenine) können eine depressive Symptomatik zusätzlich verstärken.

Da eine Supplementierung mit Tryptophan oder 5-HTP bei hoher IDO-Aktivität zu einer Akkumulation von Kynureninen führen kann, spricht diese Befundkonstellation gegen ihren therapeutischen Nutzen.

Tryptophan i.S./EDTA-Pl. (ELISA) 0.56 mg/dl 1.21 = 2.30

Ergebnis Einheit

